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Abstract  

Unsteady aerodynamic data were measured on 
an aspect r a t i o  10.3 e l a s t i c  s u p e r c r i t i c a l  wing 
wh i l e  undergoing h igh  dynamic response above 
Mach number of 0.90. These t e s t s  were conducted 
i n  t h e  NASA lang ley  Transonic Dynamics Tunnel. 
A p rev ious  t e s t  of  t h i s  wing pred ic ted  an 
unusual i nstab i  11 t y  boundary based upon 
s u b c r i t i c a l  response data. During the  present 
t e s t  no i n s t a b i l i t y  was found, but an angle of 
a t tack  dependent narrow Mach number region o f  
h igh  dynamic wing response was observed over a 
wide range o f  dynamic pressures. The e f f e c t  on 
dynamic wing response of wing angle o f  a t tack ,  
s t a t i c  outboard con t ro l  surface de f l ec t i on  and a 
lower sur face  spanwise fence loca ted  near the  60 
percent l o c a l  chord l ine  was invest igated. The 
d r i v i n g  mechanism o f  the dynamic wing response 
appears t o  be re la ted  t o  chordwise shock 
movement i n  conjunct ion w i th  f l o w  separat ion and 
reattachment on both the  upper and lower 
surfaces. 
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l i f t  coe f f i c i en t  
pressure coef f i c i  ent 
a l t i t u d e ,  feet 
Hertz, cyc l  es/second 
free-stream Mach number 
f ree-stream dynamic pressure, psf 
Reynolds number, per foo t  
f r a c t i o n  of  l oca l  chord 
wing roo t  angle of  at tack,  degrees 
( p o s i t i v e  leading-edge up) 
mean cont ro l  surface de f l ec t i on  angle, 
degrees (pos i t i ve  t r a i l i n g s d g e  down) 
l i f t i n g  pressure c o e f f i c i e n t  (pos i t i ve  
UP) 
f r a c t i o n  o f  semispan 

I n t  roduct i on 

S i  ng l  e degree-of -f reedom bendi ng mode 
osci  1 l a t i  ons have unexpectedly been encountered 
dur ing  experiments w i th  several a i r c r a f t  
conf i gura t  i ons. These o s c i l l a t i o n s  are  
c h a r a c t e r i s t i c a l l y  la rge  amp1 i tude osci 11 a t i  ons 
i n  a l o w  frequency v i b r a t i o n  mode and tend t o  be 

angle o f  at tack dependent. These o s c i l l a t i o n s  
have been observed on a 1 aspect r a t i o  wing 
w i th  subsonic a i s f o i l  shape? on the  B-1A dur ing  
a wind-up tu rn ,  on the canard o f  t he  HIMAJ 
ae roe las t i c  model a t  negative angle o f  a t tack  
and on a forward swept wing fo rce  q d e l  wing 
panel a t  a negat ive angle o f  at tack.  L inear 
theory f l u t t e r  analysis was unable t o  p r e d i c t  
any of these osc i l l a t i ons .  The R - 1  i n s t a b i l i t y  
has been a t t r i b u t e d  t o  a dynamic leading edge 
vortex f l ow  mechanism. The other i n s t a b i l i t i e s  
are a t t r i b u t e d  t o  t ransonic shock wave motion 
coupl ing w i th  the f i r s t  wing bending mode. 

An unusual t ransonic i n s t a b i l i t y  a l so  was 
encountered near M = 0.9 dur ing  an unsteady 
pressure t e s t  of  the  second Aeroelast ic Research 
Wing (ARW-2)3 of  t he  NASA Drones f o r  Aerodynaqit 
and S t ruc tu ra l  Testing (DAST) program. 
This aeroe las t ic  s u p e r c r i t i c a l  wing was 
i n i t i a l l y  tes ted  i n  October 1983 i n  the  lang ley  
Transonic Dynamics Tunnel (TDT). The wing had 
an aspect r a t i o  o f  10.3 and a leading edge 
sweepback angle of  28.8". The wing a lso  had a 
hydraul i ca l  l y  d r i  ven outboard t r a i l i n g  -edge 
cont ro l  surface and was instrumented w i t h  
dynamic pressure transducers. This unusual 
t ranson ic  i n s t a b i l i t y  boundary was pred ic ted  
using a s u b c r i t i c a l  response technique. This 
i n s t a b i l i t y  was predicted t o  occur a t  an almost 
constant Mach number o f  0.9 f o r  a l l  dynamic 
pressures tested. The wing motion was p r i m a r i l y  
f i r s t  wing bending mode response and was angle 
of  a t tack  dependent. I d e n t i f y i n g  such an 
unusual t ransonic i n s t a b i l i t y  boundary appears 
t o  be F y o n d  the  scope o f  l i n e a r  theory 
analysis.  

Thus a second wind tunnel  t e s t  was 
performed on the DAST ARW-2 wing t o  f u r t h e r  
i nves t i ga te  t h i s  unusual i n s t a b i l i t y .  The 
primary purpose o f  the t e s t  was t o  es tab l i sh  
f irmly the existence of the  i n s t a b i l i t y  boundary 
and t o  gather wing response data and dynamic 
pressure measurements t o  he lp  understand the  
mechanism fo rc ing  the  wing osc i l l a t i ons .  

This paper presents the  r e s u l t s  from t h i s  
second wind tunnel t e s t  of the DAST ARW-2 wing. 
Dynamic wing motion and pressures were measured 
f o r  wind tunnel Mach numbers from 0.50 t o  0.96 
a t  dynamic pressures from 100 t o  over 340 pounds 
per square foo t  (psf) .  Wool t u f t s  were used t o  
v i sua l i ze  the  f low patterns on the  wing i n  the  
i n s t a b i l i t y  region. The e f f e c t  on dynamic wing 
response o f  wing angle o f  at tack,  s t a t i c  
outboard cont ro l  surface d e f l e c t i o n  and a 
spanwise fence on the  lower surface were 
invest igated. 



Model - 
Figure  1 shows the  wing and fuselage 

con f igu ra t i on  mounted i n  the  wind tunnel. The 
e l a s t l c  semispan wing used i n  the  present study 
i s  t he  DAST ARW-2 r i g h t  wing panel. A half-body 
fuselage was used t o  s imulate the  drone 
fuselage. This fuselage had shor te r  nose and 
t a i l  sect ions than does the drone fuselage since 
no supersonic t e s t s  were t o  be made. The center 
sec t ion  of t he  fuselage was s i m i l a r  t o  the  
ac tua l  drone fuselage i n  both diameter and wing 
l oca t i on  t o  generate the  proper a i r f l o w  over the  
inboard sec t ion  of the wing. Both the  fuselage 
and the  wing were mounted on a remotely 
con t ro l  l e d  tu rn tab le  mechanism loca ted  on the  
tunnel  s idewal l .  

The wing planform i s  shown i n  Figure 2. 
The wing had an aspect r a t i o  o f  10.3 w i t h  a 
l ead ingsdge  sweep angle o f  28.8". The wing was 
equipped w i th  th ree  hyd rau l i ca l l y  dr iven con t ro l  
surfaces, two inboard and one outboard. For 
t h i s  t e s t ,  the  inboard surfaces were he ld  f i x e d  
a t  0" de f l ec t i on  and on ly  the  outboard surface 
was de f lec ted  s t a t i c a l l y .  The outboard surface 
hinge l i n e  was located a t  77 percent o f  l oca l  
chord. 

The wing contour was formed from th ree  
d i f f e r e n t  superc r i t i ca l  a i r f o i l s  as described i n  
re f .  5. These three a i r f o i l s  were located a t  
t he  fo l l ow ing  spanwise wing s ta t ions :  the 
wing-fuselage junc t i on  ( n  = 0.071), the  wing 
planform break (n = 0.426) and the wing t i p  ( n  = 
1.000) and had thickness-to-chord r a t i o s  o f  
0.146, 0.120 and 0.106, respect ively.  The th ree  
s u p e r c r i t i c a l  a i r f o i l  shapes and wing t w i s t  were 
def ined f o r  the design c ru i se  cond i t ion  and are 
described i n  re f .  6. The wing design shape was 
def ined by using s t ra igh t  l i n e  i n t e r p o l a t i o n  
along constant percent chords between these 
th ree  a i r f o i l  sections f o r  the  design c ru i se  
cond i t ions  of M = 0.80, CL = 0.53 (a = 1.3") 
and h = 46,800 fee t  (q = 127 psf) .  The j i g  
shape f o r  f ab r i ca t i on  of  the f l e x i b l e  wing was 
determined by f i r s t  ca l cu la t i ng  the wing load 
d i s t r i b u t i o n  a t  the design c ru ise  condi t ions.  
The second step was t o  ca l cu la te  the  wing 
d e f l e c t i o n  and t w i s t  f o r  the  wing load 
d i s t r i b u t i o n  using a f i n i t e  element s t r u c t u r a l  
model o f  t h e  wing. The f i n a l  step was t o  
subt rac t  t he  ca lcu la ted  wing d e f l e c t i o n  and 
t w i s t  from the wing design shape t o  de f ine  the  
wing j i g  shape. 

The wing primary s t ruc tu re  consisted o f  a 
f r o n t  spar a t  25 percent of  l oca l  chord and a 
rear  spar a t  62 percent o f  l oca l  chord.6 Ribs 
were placed perpendicular t o  the  rear spar every 
13.2 inches except f o r  the  outboard wing t i p  r i b  
which a l so  served as a spar end f i t t i n g .  The 
spars and r i b s  were machined from 7075-T73 
aluminum a l l oy .  The wing sk in  was made o f  
f i be rg lass  mater ia l  w i th  honeycomb panels 
sandwiched between the middle two layers  o f  
f i be rg lass  f o r  areas of  sk in  not located over 
the  spars o r  r ibs .  The number o f  layers  o f  
f i be rg lass  used t o  make the  sk in  var ied from 36 
a t  the  inboard end t o  27 a t  the outboard end 
with approximately 25 percent of the layers  a t  
245 degrees or ien ta t ion .  

Also shown i n  Figure 2 are the  loca t ions  o f  
t he  wing Instrumentation. The ins t rumenta t ion  
cons is ted  o f  191 dynamic pressure transducers 
and 10 accelerometers. I n  add i t ion ,  s t r a i n  
gauge br idges were loca ted  near the  wing roo t  t o  
measure bending moments. D i f f e r e n t i a l  pressure 
gauges were mounted i n  each supply l i n e  t o  the  
hyd rau l i c  actuators o f  each con t ro l  surface t o  
measure hinge moments. S m a l l  potentiometers 
were used t o  measure the  cont ro l  surface angular 
displacement. The model angle o f  a t tack  was 
measured by a servo accelerometer t h a t  was 
mounted near the  wing root. Both steady and 
unsteady pressures were obtained us ing  
d i f f e r e n t i a l  pressure transducers referenced t o  
the  tunne l ' s  s t a t i c  pressure. Streanmise rows 
o f  upper and lower surface pressure o r i f i c e s  
were loca ted  a t  s i x  span s ta t ions :  n = 0.274, 
0.476, 0.599, 0.707, 0.871 and 0.972. The f i f t h  
row a t  n = 0.871 l i e s  along the mid-span of t h e  
outboard cont ro l  surface. A l l  o f  these Surface 
o r i f i c e s  were connected t o  pressure transducers 
by matched tubes having an inner  diameter of 
0.040 inch  and a length  o f  18 inches. I n  order 
t o  determine the  tube t r a n s f e r  funct ions needed 
t o  co r rec t  the  unsteady pressure data from these 
matched -tube transducers , s i  mu1 t aneous 
measurements were a lso  obtained from a row o f  i n  
s i t u  transducers mounted on the  wing upper 
surface a t  n = 0.875, p a r a l l e l  t o  the f i f t h  row 
o f  su r f  ace o r i  f i ces . Oynami c wing def 1 ec t  i ons 
were determined using the  10 accelerometers. 

Wind Tunnel 

The Langley Transonic Dynamics Tunnel (TDT) 
i s  a c losed-c i r cu i t  continuous-f low tunnel which 
has a 16-foot square t e s t  sec t ion  w i th  s l o t s  i n  
a l l  f ou r  wal ls.  Mach number and dynamic 
pressure can be var ied  simultaneously, o r  
independently, w i t h  e i t h e r  a i r  o r  Freon as a 
t e s t  medium. Freon was used f o r  the t e s t s  i n  
t h i s  i nvest i gat i on. 

Data Acqu is i t i on  and Analysis 

Data from the  model instrumentat ion were 
acquired using TDT rea l - t ime data 
a c q u i s i t i o n  systemjhe The pressure data were 
acquired using the  e l e c t r o n i c a l l y  scanned 
pressure (ESP) system.' The ESP system i s  a 
sequent ia l ,  d i g i t a l  pressure sampling system 
equivalent t o  a mechanical scani-valve. A l l  
data were d i g i t i z e d  i n  rea l - t ime and w r i t t e n  on 
magnetic tape f o r  l a t e r  analysis.  The th ree  
inboard rows o f  surface o r i f i c e s  were d i g i t i z e d  
a t  31.25 samples per second wh i l e  t h e  th ree  
outboard rows were d i g i t i z e d  a t  250 samples per  
second. A l l  other data, i nc lud ing  model and 
tunnel  cond i t ions  and wing accelerometers, were 
d i g i t i z e d  a t  1000 samples per second. 

S t a t i c  pressures were recorded f o r  a l l  s i x  
rows of  surface o r i f i c e s .  Each pressure s igna l  
was averaged f o r  300 samples t o  acquire i t s  mean 
value. Wing bending moments were measured f o r  
a l l  cases where s t a t i c  pressures were recorded. 
The bending moment measurements were averaged 
f o r  0.3 seconds t o  ob ta in  a mean value. Dynamic 
t ime h i s t o r i e s  were recorded f o r  the  th ree  
outboard rows o f  surface o r i f i c e s  and a l l  In  
wing accelerometers. The dynamic t i m e  h i s t o r i e s  
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were recorded f o r  a minimum of 15 seconds at 
each f low condi t ion.  

Previous Test Resul ts  

Dur ing t h e  f i r s t  t e s t  of the ARW-2 wing i n  
t h e  TOT an unusual wing i n s t a b i l i t y ,  w i t h  motion 
s i m i l a r  t o  ,the wing f i r s t  bending mode, was 
encountered. The boundary was determined f o r  a 
wing angle o f  a t tack and cont ro l  surface 
d e f l e c t i o n  o f  0' w i t h i n  t h e  wind tunnel l i m i t s  
as shown i n  F igure 3. Also shown i n  F igure 3 as 
a s o l i d  l i n e  i s  t h e  pred ic ted  l i n e a r  theory 
(doublet l a t t i c e  theory)  f l u t t e r  boundary, which 
i s  o f  a conventional nature, e x h i b i t i n g  a drop 
i n  t h e  dynamic pressure a t  f l u t t e r  as Mach 
number increases. Typ ica l l y ,  experimental 
f l u t t e r  boundaries a t t a i n  a minimum value of 
dynamic pressure near M 1.0 fo l lowed by a 
r a p i d  r i s e  i n  t h e  f l u t t e r  dynamic pressures as 
speed increases fu r ther .  This i s  i n  contrast  
w i t h  t h e  experimental i n s t a b i l i t y  boundary shown 
i n  F igure  3, which i s  near ly  v e r t i c a l  a t  a Mach 
number of 0.90. The measured boundary was 
determined us ing  a f a m i l i a r  s u b t r i t i c a l  response 
technique known as peak-hold. The peak-hold 
r e s u l t s  d e f i n i t e l y  showed i n d i c a t i o n  of 
i n s t a b i l i t y  onset. However, t h e  normal 
v e r i f i c a t i o n  procedure o f  ob ta in ing  hard 
i n s t a b i l i t y  (zero damping) p o i n t s  was avoided 
f o r  f e a r  of damaging t h e  model which was t o  be 
used i n  f u t u r e  f l i g h t  programs. The boundary 
was p r e d i c t e d  t o  occur a t  a near ly  constant Mach 
number o f  0.90 beginning a t  a low dynamic 
pressure o f  about 50 pounds per  square foot 
(ps f )  (R = 874,000) and r i s i n g  near ly  v e r t i c a l  
t o  over 300 psf (R = 5,300,000). The observed 
wing motion dur ing the  i n s t a b i l i t y  was s i m i l a r  
t o  the  wing f i r s t  bending mode, the  frequency of 
which was measured t o  be 8.3 Hz i n  the  wind-of f  
model v i b r a t i o n  tes ts .  The i nstabi  1 i t y  
frequency was 8.6 Hz a t  t h e  lowest dynamic 
pressure p o i n t  and increased w i t h  dynamic 
pressure t o  about 13 Hz a t  the  h ighest  dynamic 
pressure point .  I t  i s  i n t e r e s t i n g  t o  note tha t  
t h e  p r e d i c t e d  f l u t t e r  frequency (using doublet 
l a t t i c e  l i n e a r  theory aerodynamics) was 24.3 Hz 
a t  a Mach number o f  0.80. An attempt t o  p red ic t  
t h e  i n s t a b i l i t y  us ing a three-dimensional 
t ranson ic  small disturbance code was 
unsuccessful as described i n  re f .  10. 

Recause o f  recent i n t e r e s t  i n  angle of 
a t tack  e f f e c t s  and shock induced e f f e c t s  on wing 
i n s t a b i l i t i e s , "  severa l  a d d i t i o n a l  t e s t  runs 
were made. These runs inc luded v a r i a t i o n  of 
t h e  wing angle o f  a t tack  as t h e  predic ted 
i n s t a b i l i t y  boundary was approached, comparison 
us ing  a i r  o r  Freon as the  t e s t  medium and 
comparison w i t h  and wi thout  a t r a n s i t i o n  s t r i p  
near t h e  wing lead ing  edge. The i n s t a b i l i t y  was 
found t o  be s e n s i t i v e  t o  v a r i a t i o n  i n  angle of 
a t tack  and, general ly, t h e  minimum damping 
occurred a t  o r  near zero wing root  angle of 
attack. I n  F igure  3 the  s o l i d  symbol ind icates 
t h e  Mach number and dynamic pressure where the 
comparison t e s t s  were made. The r e s u l t s  showed 
no s i g n i f i c a n t  d i f f e r e n c e  i n  the i n s t a b i l i t y  
boundary f o r  t e s t s  i n  a i r  o r  Freon. Reynolds 
number values i n  Freon are approximately 3.1 
t imes grea ter  than those obtained i n  a i r  There 
were a l s o  no s i g n i f i c a n t  d i f fe rences  fo r  tests 
i n  Freon w i th  o r  w i thout  a t r a n s i t i o n  s t r i p .  

Present Test Resul ts  and Discussion 

Dynamic pressures and w i  ng def 1 e c t  i ons were 
measured f o r  a la rge  number of t e s t  cond i t ions  
i n  t h e  TDT us ing Freon as a t e s t  medium. Data 
were taken a t  Mach numbers from 0.5 t o  0.96 f o r  
two s tagnat ion pressures. For  a Mach number 
range o f  0.8 - 0.96 the  two s tagnat ion pressures 
gave a dynamic pressure v a r i a t i o n  o f  125 - 166 
p s f  and 260 - 340 psf. These two stagnat ion 
pressures w i l l  be re fe r red  t o  as t h e  low and 
h igh  dens i ty  condit ions. 

Dynamic Wing Response 

Dynamic wing response v a r i a t i o n s  as a 
funct ion of Mach number are presented t o  examine 
t h e  ef fects  of changing dens i ty  condi t ions and 
model angle of attack. Also, t h e  e f f e c t  o f  
s t a t i c  outboard contro l  sur face d e f l e c t i o n  and 
the  a d d i t i o n  of a spanwise fence on the  lower 
sur face are examined. A l l  dynamic wing response 
data presented i s  obtained from t h e  rear  wing 
t i p  accelerometer. 

Mach Number and Dynamic Pressure Ef fects :  
F igure 4 shows the peak-hold r e s u l t s  from t h e  
wing t i p  accelerometer f o r  both the  low and h igh  
dens i ty  condi t ions.  The wing angle o f  a t tack  
and cont ro l  surface d e f l e c t i o n  were he ld  a t  0". 
The data show t h a t  no i n s t a b i l i t y  was found but 
instead a reg ion o f  h igh dynamic wing response 
was observed. For the lower densi ty  cond i t ion  
(q = 125 - 166 psf) t h e  wing motion reaches a 
maximum a t  M = 0.93 and then r a p i d l y  decreases 
w i t h  increas ing Mach number. The same t r e n d  
occurs fo r  the higher densi ty  cond i t ion  (q = 260 - 340 p s f )  wi th maximum wing motion occur r ing  
near M = 0.92. The observed wing t i p  maximum 
dynamic amplitudes are noted i n  F igure 4. A t  
t h e  lower densi ty  condi t ion,  t h e  ampli tude o f  
t h e  wing t i p  motion was approximately 2 inches 
peak-to-peak. A t  the h igher  dens i ty  condi t ion,  
which has double the  dynamic pressure, t h e  
ampli tude of t h e  wing t i p  motion doubled t o  
approximately 4 inches peak-to-peak. 

Also shown i n  F igure 4 ( b )  a t  M = 0.92 i s  a 
s i n g l e  p o i n t  fo r  a = -1" where 6 inches 
peak-to-peak ampli tude o f  wing t i p  motion was 
observed. A t  t h i s  cond i t ion  t h e  wing motion was 
so severe t h a t  the tunnel  bypass valves were 
opened t o  r a p i d l y  reduce the  dynamic pressure 
and associated wing motion. 

Angle o f  Attack Effects: F igure 5 shows 
t h e  peak-hold resu l ts  from the  wing t i p  
accelerometer f o r  three wing angles o f  a t tack a t  
t h e  lower densi ty  condit ion. The mean cont ro l  
surface d e f l e c t i o n  was h e l d  a t  0'. As shown i n  
t h e  f igure ,  the  mximum dynamic wing response 
occurred f o r  a wing angle o f  a t tack o f  0" a t  M = 
0.93. Changing the wing angle o f  a t tack t o  2 
and -2 degrees decreased t h e  maximum wing 
response and s h i f t e d  t h e  corresponding Mach 
number t o  0.94. S imi la r  angle o f  a t tack t r e n d  
r e s u l t s  were seen a t  the  h igher  dens i ty  
condi t ion.  Data were taken f o r  wing angles o f  
a t tack o f  1, 0 and -1 degrees up t o  M = 0.9 and 
f e l l  w i t h i n  the  sca t te r  of the  experimental data 
observed a t  0" as shown i n  F igure 4. Therefpre 
i t  i s  be l ieved t h a t  f o r  t h i s  c o n f i g u r a t i o n  t h e  
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maxlmum wing response occurs when the  wing angle 
o f  a t tack  i s  nominal ly a t  0". 

.90 

.92 

.94 

.96 

Control Surface Effects: Figure 6 shows 
the  p e a k a o l d  resu l t s  from the  wing t i p  

.7 - 1.0 

.7 - 1.0 
- 6  - 1.0 

.6 - 1.0 

accelerometer fo r  three outboard cont ro l  surface 
mean d e f l e c t i o n  angles a t  t he  lower densi ty 
condtt ion.  The wing angle of a t tack  was set a t  
0". The f i g u r e  shows a small increase i n  wing 
response f o r  t he  control  surface de f lec t ion  of 
6" ( t ra i l i ng -edge  down). However, a s i g n i f i c a n t  
reduc t ion  i n  wing response i s  shown f o r  a 
d e f l e c t i o n  o f  -6". The wing t i p  maximum 
response peak i s  reduced by h a l f  and s h i f t e d  t o  
a lower Mach number o f  0.91. 

Lower Surface Spanwise Fence E f fec ts :  I n  
an attempt t o  d i s t u r b  the f l o w  and change the  
dynamic wing response, a l / t - i n c h  h igh  spanwise 
fence was at tached t o  the  lower surface a t  
approximately the  60% loca l  chord l ine  as shown 
i n  F igure  7. The fence ran from the  wing 
planform break (a = 0.426) t o  w i t h i n  5 inches o f  
the wing t i p  (a = 0.956). The fence was made up 
of 5 separate one foot- long pieces o f  aluminum 
placed end t o  end t o  minimize inc reas ing  the  
wing s t i f f ness .  The e f fec t  of the  fence on the  
wing t i p  accelerometer peak-hold response a t  t he  
lower densi ty cond i t ion  i s  shown i n  Figure 8. 
The fence has a s ign i f i can t  e f fec t  upon the  wing 
response, lowering the  amplitude of maximum wing 
motion and s h i f t i n g  the peak value t o  a lower 
Mach number of 0.90. 

Mean Pressures 

Figure 9 shows the mean chordwise pressure 
d i s t r i b u t i o n  a t  the 87.1% span s t a t i o n  f o r  n ine  
Mach numbers a t  the  lower densi ty condi t ion.  
The wing angle of attack and outboard mean 
con t ro l  surface de f lec t ion  were 0". As Mach 
number increases, a shock develops on the upper 
surface a t  M = 0.85 and becomes q u i t e  strong a t  
M = 0.89. The c r i t e r i a  used t o  determine 
t r a i l i n g - e d g e  f l o w  separation from mean pressure 
measurements i s  the attainment o f  negat ive 

pressure c o e f f i c i e n t s  a t  t he  95% chord 
loca t ion .  When negative pressures are sustained 
a f t  o f  t h i s  loca t ion ,  the  f low i s  considered t o  
be separated. Based upon the  mean pressure 
d i s t r i b u t i o n s  shown i n  Figure 9, i t  appears t h a t  
f l o w  separat ion on the  upper surface i s  evident 
a t  M = 0.92 and i s  es tab l i shed s t rong ly  a t  M = 
0.94. The lower surface develops a s t rong shock 
a t  M = 0.92 and the  pressure d i s t r i b u t i o n s  
i n d i c a t e  f l o w  separat ion a t  M = 0.96. 

Flow V i  sua1 i z a t i o n  

Wool t u f t s  were placed on the  upper and 
lower wing surfaces fo r  several t e s t  runs t o  
v i s u a l i z e  the flow pat te rns  on the  wing. The 
t u f t s  were placed on e igh t  span s ta t i ons  loca ted  
a t  a = .517, .558, .635, .671, .761, .816, .go5 
and .938, as shown i n  F igure  10. The t u f t s  were 
one inch long and on the  s i x  inboard span 
s ta t i ons  were loca ted  a t  every 10% o f  l o c a l  
chord. On the  two outboard span s ta t i ons  the  
t u f t s  were loca ted  between 10 and 90% chord a t  
every 20% of l oca l  chord. 

Table 1 l i s t s  the regions o f  separated f low 
on the  wing as i nd i ca ted  by the t u f t  data f o r  
Mach numbers from 0.85 t o  0.96 a t  t he  lower 
dens i ty  condi t ion.  Upper surface f l o w  
separat ion i s  f i r s t  ind ica ted  a t  M = 0.88. The 
region of separated f l o w  expands upstream and 
outboard as Mach number increases t o  0.94 and 
then remains constant t o  M = 0.96. Flow 
separat ion on the  lower surface i s  i n i t i a l l y  
i nd i ca ted  a t  M = 0.90. The region of separated 
f low expands upstream and outboard as Mach 
number increases t o  0.94. A t  M = 0.96 the  
region of separated f low on the  lower surface 
decreases, moving downstream and inboard. 

Comparing t h i s  data t o  the mean pressure 
d i s t r i b u t i o n s  shown i n  Figure 9 leads t o  two 
conclusions. The f i r s t  i s  t h a t  the  mean 
pressure data gives an incomplete p i c t u r e  o f  the  
f l o w  separation. The mean pressure data, taken 
a t  n = 0.871, does not i n d i c a t e  f low separat ion 
on the  upper surface u n t i l  M = 0.92 wh i l e  the  
wool t u f t s  i nd i ca te  separat ion i n  the region o f  

Table 1. Separated f low regions as shown by wool t u f t s  

I Region of separated f low 

I Upper surface 

a 

----- 
,517 - -816 

e517 - -905 

,517 - ,938 

.517 - .938 

-517 - ,938 

Lower surface 

X I C  n 
~ 

----- 
--e-- 

.635 - ,761 

,635 - -938 

.635 - ,938 

.635 - -905 
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t h e  pressure transducers near M = 0.89. Flow 
separat ion on the  lower surface i s  not ind ica ted  
by the  mean pressures u n t i l  M = 0.96 wh i le  the 
t u f t s  i n d i c a t e  separat ion i n  the region a t  M = 
0.92. The second conclusion i s  t h a t  f low 
separation, as shown by the t u f t  data, coincides 
w i t h  t h e  occurrence of strong shocks on a 
surface, as shown by the  mean pressure data i n  
Figure 9. This f low separation occurs near M = 
0.89 on the  upper surface and M = 0.92 on the 
lower surface a t  the  87.1% span s ta t ion .  

Wing De f lec t i on  and Twist 

nu r ing  the  tes t ,  measurements o f  the mean 
wing t i p  d e f l e c t i o n  and t w i s t  were made using an 
o p t i c a l  cathetometer instrument focused on a 
s t r a i g h t  l i n e  drawn on the outboard t i p  of  the 
wing. The r e s u l t s  o f  the  wing t i p  measurements 
fo r  the lower densi ty cond i t ion  a t  a wing angle 
o f  a t tack  and mean cont ro l  surface de f l ec t i on  of 
Oo are shown i n  Figure 11. The wing t i p  
def l e c t i  on and t w i s t  increase as Mach number 
increases up t o  a maximum near M = 0.85. A t  
h igher Mach numbers the  wing t i p  d e f l e c t i o n  and 
t w i s t  values decrease rap id l y  as the Mach number 
increases. This agrees w i th  the t u f t  data which 
shows f l ow  separat ion beginning on the  upper 
surface a t  M = 0.88, causing loss of l i f t  (see 
Figure 9) and the  r e s u l t i n g  decrease i n  wing 
def l e c t i  on and tw is t .  

Instantaneous Pressures 

F igure  12 shows the  instantaneous chordwise 
pressure d i s t r i b u t i o n  a t  the R7. l% span s ta t i on  
f o r  M = 0.92, a = -1" and 6, = 0". This i s  
t he  cond i t i on  a t  which 6 inch  peak-to-peak wing 
t i p  motion occurred (Figure 4(b)). The 
instantaneous pressure d i s t r i b u t i o n s  are shown 
f o r  the  maximum and minimum v e r t i c a l  wing t i p  
de f l ec t i on .  Based upon the  pressure a t  95% 
chord, a t  the  maximum wing t i p  de f l ec t i on  the 
f l ow  a f t  of  the  shock i s  separated on the  upper 
and lower surfaces. The f l o w  i s  attached on 
both surfaces when the v e r t i c a l  t i p  de f l ec t i on  
i s  a minimum. 

This f i g u r e  po in ts  out an important fea ture  
o f  t h i s  dynamic motion. A t  condi t ions where 
l a rge  ampli tude dynamic motion i s  encountered 
the  t r a i l i n g s d g e  f low begins a pa t te rn  of 
separat ing and rea t tach ing  on the  wing, which 
coincides with the  shock wave motion. As the 
Mach number i s  increased above 0.92 the f l o w  
behind the  shock remains separated (see Figure 
9) and the  ampli tude o f  the  motion rap id l y  
decreases (see Figure 4). Thus i t  appears 
t h a t  the  dynamic wing response i s  re la ted  t o  
chordwise shock motion i n  conjunct ion w i th  shock 
induced flow separat ion and reattachment on both 
the  upper and lower surfaces. This conclusion 
i s  supported f u r t h e r  by the  r e s u l t s  obtained 
when the  spanwise fence was attached t o  the wing 
lower surface. The fence prevented reattachment 
of the f low on t h a t  surface and the  maximum wing 
motion was found t o  be dramat ica l l y  reduced as 
shown i n  Figure 8. 

The a l t e r n a t i n g  separat ion and reattachment 
o f  t he  f l o w  on the  upper and lower surfaces also 
explains the  discrepancy between the  mean 

pressure and wool t u f t  data. The mean pressure 
data gives an average of  t he  pressure values i n  
the  t r a i l i n g s d g e  region. If, on the  average, 
the  f l o w  i s  attached most o f  the  time, the  mean 
pressure d i s t r i b u t i o n s  w i l l  i n d i c a t e  t h a t  t he  
f l o w  i s  attached. The mean data gives an 
accurate i n d i c a t i o n  o f  separation only when t h e  
f l o w  remains separated most o f  t he  t ime. 
Another po in t  t o  note i s  t ha t  wh i l e  the  wool 
t u f t s  i n d i c a t e  f l o w  separation, they are  
inadequate f o r  i n d i c a t i n g  the  subsequent f l ow  
reattachment. 

Figure 13 shows a t i m e  h i s t o r y  o f  upper and 
lower surface pressures a t  the  same span s t a t i o n  
and f l o w  cond i t ions  as given i n  F igure  12. A l l  
pressures are a r b i t r a r i l y  p l o t t e d  so t h a t  they 
f i t  near each other. However, the  l a s t  
chordwise pressures on both surfaces are p l o t t e d  
w i t h  a zero reference l i ne .  For the  l a s t  
chordwise pressures, the f i g u r e  c l e a r l y  shows 
the  separat ion and reattachment o f  f l o w  i n  the  
t r a i l i n g s d g e  region of  both surfaces as the  
pressure values f l uc tua te  above and below zero. 
The shock motion, as ind ica ted  by l a rge  pressure 
var ia t ions ,  i s  a l so  shown i n  the f igure .  For 
example, t he  upper surface shock can be seen t o  
move from i n  f r o n t  o f  68.0% o f  l oca l  chord t o  
behind 74.2%. The lower surface shock moves 
from i n  f r o n t  o f  46.0% t o  behind 51.3%. A t  the  
bottom o f  the  f i g u r e  the measured wing roo t  
bending moment t ime h i s t o r y  i s  p l o t t e d  f o r  
reference. For the observed motion, the  wing 
roo t  bending moment i s  p ropor t iona l  t o  wing t i p  
displacement, being maximum f o r  maximum p o s i t i v e  
(up) wing t i p  pos i t ion .  

Concluding Remarks 

Unsteady aerodynamic and response data were 
measured on an aspect r a t i o  10.3 e l a s t i c  
supercr i  t i  ca l  wing undergoing h igh  dynamic 
response above Mach number o f  0.90. The wing 
had been tes ted  prev ious ly  i n  the  NASA Langley 
TDT and an unusual i n s t a b i l i t y  boundary was 
pred ic ted  based upon s u b c r i t i c a l  response data. 
Contrary t o  the pred ic t ions ,  no i n s t a b i l i t y  was 
found dur ing the present tes t .  Instead a region 
of  h igh  dynamic wing response was observed which 
reached a maximum value between Mach numbers 
0.92 and 0.93. The amplitude o f  the dynamic 
response increased d i r e c t l y  w i t h  dynamic 
pressure. Maximum wing t i p  motion observed was 
6 inches peak-to-peak. The dynamic wing 
response was sens i t i ve  t o  angle o f  at tack,  w i t h  
maximum motion occur r ing  near a = 0". S t a t i c  
d e f l e c t i o n  o f  the  outboard con t ro l  surface was 
found t o  decrease s i g n i f i c a n t l y  the  dynamic 
response f o r  6, = -6". A spanwise fence 
i n s t a l l e d  on the lower surface a t  approximately 
the  60% l oca l  chord l ine  t o  d i s t u r b  the  f l o w  
pa t te rn  resu l ted  i n  a s i g n i f i c a n t  decrease i n  
dynamic wing response. 

The response appears t o  be r e l a t e d  t o  
chordwise shock movement i n  con junc t ion  w i t h  
f l o w  separat ion and reattachment on the  upper 
and lower wing surfaces. A t  Mach numbers above 
0.93 the dynamic response r a p i d l y  decreases w i t h  
inc reas ing  Mach number. This i s  l i k e l y  due t o  
the  f l o w  remaining completely separated a f t  o f  
the shock. Mean pressure data i nd i ca tes  
separat ion only a f t e r  the f l o w  has become f u l l y  
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separated. Tufts on t he  wing i nd i ca ted  t h e  
onset of f low separation a t  s l i g h t l y  lower Mach 
numbers than ind icated by the  mean pressure 
data. The onset of f l aw  separation coincided 
w i t h  t h e  occurrence of s t rong shocks on a 
surface. Instantaneous pressure d i s t r i  but ions 
i nd i ca ted  t h a t  t he  f l ow  was i n t e r m i t t e n t l y  
separating and reattaching near the  t r a i l i n g  
edge under condit ions of maximum wing motion. 
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Fig. 1 Wing mounted i n  TOT t e s t  section. 
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0 Calibration transducers 
0 Accelerometers 
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Fig. 2 Wing planform and instrumentation 
locat ions ( i n  inches). 
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Fig. 3 Experimental and l i n e a r  theory 
p red ic t i ons  of wing i n s t a b i l i t y  
boundary. 
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(a )  q = 125 - 166 psf. 
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(b)  q = 260 - 340 psf. 

Fig.  4 Peak-hold response data from wing t i p  accelerometer a t  6,,, = 0'. 
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F ig .  5 Peak-hold response data from wing t i p  
accelerometer f o r  three  angles of  
a t tack  a t  6, = Oo and q = 125 - 
166 psf .  

Amplitude 

o 6m = Oo 
6m = 6 O  

A bm = -6O 

.80 .85 .90 .95 1.00 
Mach number 

Fig.  6 Peak-hold response data from wing 
t i p  accelerometer for  three  mean 
control  surface de f lec t ion  angles a t  
a = 0' and q = 125 - 166 psf .  
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Fig. 8 Peak-hold response data from wing t i p  
accelerometer f o r  wing wi th  and 
without lower surface spanwise fence 

Fig. 7 Wing w i t h  spanwise fence attached t o  
lower surface. 

a t  a = no, 6,,, = 00 and q = 125 - 
166 psf. 

wer surface 
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Fig. 9 Mean chordwise pressure d i s t r i b u t i o n s  f o r  n ine Mach numbers a t  
rl = 0.871, a = 0'. = 0' and q = 125 - 166 psf.  
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Fig. 10 Wool t u f t s  i n s t a l l e d  on wing lower 
surf ace. 
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Fig. 11 Measured m a n  wing t i p  d e f l e c t i o n  and t w i s t  versus Mach number a t  
a = Oo, 6, = 0' and q = 100 - 166 psf.  
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Fig.  12 Instantaneous chordwise pressure d i s t r i b u t i o n s  a t  maximum and minimum 
wing t i p  d e f l e c t i o n  a t  n = 0.871, M = 0.92, a = -lo and 6,,, = 0'. 
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Fig.  13 Pressure v a r i a t i o n  w i t h  t ime a t  
n = 0.871, M = 0.92, a = -lo and 
a, = no. 
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